Assessment of Background Scattering at X- and Ku-band in Snow Remote Sensing

Shurun Tan¹, Do-Hyuk Kang², Jiyue Zhu¹, Weihui Gu¹, Liuxi Tian³, and Leung Tsang¹

¹Radiation Laboratory, Department of EECS, University of Michigan, Ann Arbor, MI, USA ² NASA Goddard Space Flight Center (GSFC), Greenbelt, MD, USA ³ Department of Geological Science, University of Texas at San Antonio, TX, USA

Why Care about Snowpack Background Scattering? -- A look at the SnowSAR Data at Trail Valley Creek, Canada, 2012/13

- Background scattering affects more at X- than Ku- band
- Good volume scattering prediction through Bicontinuous media / DMRT.

Classification of backscatter through equivalent grain size (represented by albedo) improves its sensitivity to SWE

Subtraction of background scattering further restores the high sensitivity of backscatter to SWE

Field Observations for Snowpack/ Soil Interface Characterization

Soil Moisture, Roughness and Temp. Characterization

- Soil roughness: Pin board: difficult to clean snow, better done at snow free

condition; ~0.8cm RMS

Terrestrial lidar scan: snow free condition; influenced by small scale surface vegetation; ~2cm RMS

TLS surface elevation

TLS surface RMS

(TLS plots courtesy of FMI)

Snow-buried Vegetation Characterization

- Geometries Orientations
- Number
- Densities
- Moisture Content and **Permittivities**

Deadfall with branches

Organic layer with mosses/liches

Grass

Modeling of Background Scattering from Snow/ Soil Interface

Surface Scattering from the Snow/Soil Rough Interface:

- Method 1: Use empirical Model, such as OH model
 - Two parameters: rms and ε_a
- Method 2: Use physical scattering model of NMM3D
 - Three parameters: rms, correlation length (cl), and ε_a
 - Applicable to wide range of surface parameters

Volume Scattering from Buried Vegetation:

- Method 1: Distorted Born Approximation
- Method 2: Radiative Transfer with Multiple Scattering
- Method 3: Layered roughness model for the decayed organic layer

cl/rms = 10, rms = 0.3cmMoisture: 5%

Estimation of Background Scattering in the SWE Retrieval Algorithm

- Method 1: Polarimetry: volume / surface scattering decomposition
 - Option 1: requires fully polarimetry
 - Option 2: neglect double bounce term in snow scattering use only VV and VH
- Method 2: Combine Active and Passive
 - Snowpack: ω and τ ; temperature T_s for passive
 - Surface: rms and ε_g ; temperature T_g for passive
 - Observables: σ_X , σ_{Ku} , $T_{b,Ku}$, $T_{b,Ka}$

- Method 3: snow free + snow on measurements
 - Option 1: Take snow free measurements as background scattering (time series)
 - Option 2: From snow free measurements derive rms (and cl), take ε_g as a free variable to be determined in snow on condition; build conversion table w.r.t. snow density
- Require forward modeling with controlled ground measurements to check the accuracy of each approach